Searching for Efficient Multi-Scale Architectures for Dense Image Prediction

Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam, Jonathon Shlens Google Inc.

MOTIVATION Dense Prediction Cell (DPC)

- Meta-learning approaches may exceed human-invented architectures on scalable image classification (Zoph et al, 2017).
- The real promise of meta-learning is our ability to extend these techniques to other domains (Saxena and Verbeek, 2016; Zoph and Le, 2017).
- We present a first effort towards applying meta-learning to dense image prediction.

OVERVIEW

1. Challenges: Naively porting ideas from image classification (Russakovsky et al., 2015) would not suffice:

- Network motifs and operations notably differ.
- Architecture search must inherently operate on high resolution imagery to capture multi-scale information.
- 2. Overview of proposed methods:
- A computationally tractable and simple proxy task.
- A recursive search space for a dense prediction cell (DPC).

METHODS- PROXY TASK

- 1. Goal of proxy tasks:
- Fast to compute, and must correlate with large-scale task.
- 2. Our proposed proxy tasks:
- A DPC is directly built on the cached feature maps.
- 3. Proxy task trains in 90 minutes on 1 GPU (100x speed-up).

(a) Score distribution

0.72 0.595 0.6 0.605 0.61 0.615

(b) Predictive of large-scale task ($\rho = 0.46$)

METHODS- SEARCH SPACE

1. Recursive search space built from operations gleaned from dense prediction literature.

- DPC is a DAG graph with B branches.
- Branch b_i is represented by a 3-tuple, (X_i, OP_i, Y_i) , where $X_i \in$ \mathcal{X}_i is the input tensor, $OP_i \in \mathcal{OP}$ is the operation on input X_i , and Y_i is the output tensor.
- The final output, $Y = concat(Y_1, Y_2, \ldots, Y_B)$
- $\mathcal{X}_i = \{\mathcal{F}, Y_1, \dots, Y_{i-1}\}$ (i.e., last network backbone feature maps, \mathcal{F} , plus all outputs obtained by previous branches).
- $X_1 = \{\mathcal{F}\}$, i.e., the first branch can only take \mathcal{F} as input.
- 2. The operator space, OP, is defined as:
- Convolution with a 1×1 kernel.
- 3×3 atrous separable convolution (Howard et al., 2017; Chen et al., 2018) with rate $r_h \times r_w$, where r_h and $r_w \in$ $\{1, 3, 6, 9, \ldots, 21\}.$
- Average spatial pyramid pooling (Zhao et al., 2017) with grid size $g_h \times g_w$, where g_h and $g_w \in \{1, 2, 4, 8\}$.

- 3. Our proposed search space encodes leading architectures:
- For $\mathcal{B} = 5$ branches, the search space contains $\mathcal{B}! \times 81^{\mathcal{B}} \approx$ 4.2×10^{11} configurations.
- 4. We build on top of an efficient random search algorithm (Golovin et al., 2017).
- Sampling points uniformly at random as well as sampling some points near the currently best observed architectures (in total 28K architectures and 2600 GPU hours).
- 5. Found DPC architecture:

• Each branch of the cell could be built in parallel or in cascade.

EXPERIMENTAL RESULTS

Method	mIOU
PSPNet Mapillary Research	81.2 82.0
DeepLabv3+	82.1
DPC (ours)	82.7

(a) Cityscapes test set

(b) PASCAL-Person-Part val set (c) PASCAL VOC 2012 test set

CONCLUSIONS / FUTURE DIRECTIONS

- from: tree/master/research/deeplab

1. Cityscapes (Cordts et al., 2016): 19 classes (e.g., road, pedestrian).

2. PASCAL-Person-Part (Chen et al., 2014): 7 classes (e.g., head, torso).

3. PASCAL VOC 2012 (Everingham et al., 2014): 21 classes (e.g., dog, sofa).

Method	mIOU
Liang <i>et al</i> .	63.57
Xia <i>et al</i> .	64.39
Fang et al.	67.60
DPC (ours)	71.34

01.15.2005	

	Method	mIOU	
	EncNet	85.9	
	DFN	86.2	
,	DeepLabv3+	87.8	
	ExFuse	87.9	
	MSCI	88.0	
	DPC (ours)	87.9	
(c)	PASCAL VOC	2012 test se	ł

• This work demonstrates that meta-learning achieves state-ofthe-art results on 3 dense image prediction tasks. • Employing more sophisticated meta-learning outside (e.g. re-

inforcement learning, SMBO) may lead to further gains. • A version of the dense prediction cell may be downloaded https://github.com/tensorflow/models/